Evidence that kinetochore microtubules in crane-fly spermatocytes disassemble during anaphase primarily at the poleward end.
نویسندگان
چکیده
Anaphase chromosome motion involves the disassembly of kinetochore microtubules. We wished to determine the site of kinetochore microtubule disassembly during anaphase in crane-fly spermatocytes. In crane-fly spermatocyte spindles, monoclonal antibody 6-11B-1 to acetylated alpha-tubulin labels kinetochore microtubules almost exclusively, with an area immediately adjacent to the kinetochore being weakly or not labelled. This 'gap' in acetylation at the kinetochore serves as a natural marker of kinetochore microtubules in the kinetochore fibre. We measured the length of the gap on kinetochore fibres in metaphase and anaphase in order to deduce the fate of the gap during anaphase; we used this information to determine where kinetochore microtubules disassemble in anaphase. Gap lengths were measured from confocal microscope images of fixed spermatocytes dual labelled with 6-11B-1 to acetylated alpha-tubulin and YL1/2 to tyrosinated alpha-tubulin, the latter being used to determine the positions of kinetochores. In metaphase the average gap length was 1.7 microns. In anaphase, the gap appeared to decrease in length abruptly by about 0.4 microns, after which it decreased in length by about 0.2 microns for every 1 microns that the chromosome moved poleward. PacMan models of chromosome movement predict that this 'gap' in staining should disappear in anaphase at a rate equal to that of chromosome movement. Thus, our results do not support theories of chromosome motion that require disassembly solely at the kinetochore; rather, in crane-fly spermatocytes kinetochore microtubule disassembly in anaphase seems to take place primarily at the poles.
منابع مشابه
Direct Visualization of Microtubule Flux during Metaphase and Anaphase in Crane-Fly Spermatocytes□V
Microtubule flux in spindles of insect spermatocytes, long-used models for studies on chromosome behavior during meiosis, was revealed after iontophoretic microinjection of rhodamine-conjugated (rh)-tubulin and fluorescent speckle microscopy. In time-lapse movies of crane-fly spermtocytes, fluorescent speckles generated when rh-tubulin incorporated at microtubule plus ends moved poleward throug...
متن کاملDirect visualization of microtubule flux during metaphase and anaphase in crane-fly spermatocytes.
Microtubule flux in spindles of insect spermatocytes, long-used models for studies on chromosome behavior during meiosis, was revealed after iontophoretic microinjection of rhodamine-conjugated (rh)-tubulin and fluorescent speckle microscopy. In time-lapse movies of crane-fly spermtocytes, fluorescent speckles generated when rh-tubulin incorporated at microtubule plus ends moved poleward throug...
متن کاملPartner telomeres during anaphase in crane-fly spermatocytes are connected by an elastic tether that exerts a backward force and resists poleward motion.
As chromosomes move polewards during anaphase in crane-fly spermatocytes, trailing arms commonly stretch backwards for a brief time, as if tethered to their partners. To test that notion, a laser microbeam was used to sever trailing arms and thereby release telomere-containing arm segments (called acentric fragments because they lack kinetochores) from segregating chromosomes. Analysis of the m...
متن کاملFunctional implications of cold-stable microtubules in kinetochore fibers of insect spermatocytes during anaphase
In normal anaphase of crane fly spermatocytes, the autosomes traverse most of the distance to the poles at a constant, temperature-dependent velocity. Concurrently, the birefringent kinetochore fibers shorten while retaining a constant birefringent retardation (BR) and width over most of the fiber length as the autosomes approach the centrosome region. To test the dynamic equilibrium model of c...
متن کاملMicrotubule flux mediates poleward motion of acentric chromosome fragments during meiosis in insect spermatocytes.
We applied a combination of laser microsurgery and quantitative polarization microscopy to study kinetochore-independent forces that act on chromosome arms during meiosis in crane fly spermatocytes. When chromosome arms located within one of the half-spindles during prometa- or metaphase were cut with the laser, the acentric fragments (lacking kinetochores) that were generated moved poleward wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 107 ( Pt 11) شماره
صفحات -
تاریخ انتشار 1994